Periodic Table of the Elements | 1 | | | | | | | | | | | | | | | | | 18 | |--|--------------------------------------|--|--|--|--|---------------------------------------|---------------------------------------|--|---|---------------------------------------|-----------------------------------|---|--------------------------------------|--|---|----------------------------------|--| | 1
Hydrogen
1.0080 | | Atomic number — Atomic number — Element | | | | | | | | | | | | | | | 2
He
Helium
4.0026 | | 1.0000 | 2 | | Hydrogen
1.0080 | ← Eleme | | | | | | | | 13 | 14 | 15 | 16 | 17 | 4.0020 | | 3
Li
Lithium
6.968 | Beryllium 9.01218 | 1.0080 Atomic weight Cell color Elements in cells of this color possess metallic characteristics (they are shiny, conduct heat and elzectricity easily and become ionized easily, etc.). 5 C Carbon 10.814 7 8 O Oxygen 11.0069 15.9994 | | | | | | | | | | | | | 9
Fluorine
15.9994 | 10
Ne
Neon
20.1797 | | | 11 | 12 | | Eleme | nts in cells of th | is color posses | s non-metallic | characteristics | i. | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na | Mg | | | | | | | | | | | | | | | CI | Ar | | Sodium
22.9898 | Magnesium 24.306 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Aluminium
26.9815 | Silicon
28.085 | Phosphorus 30.9738 | Sulfur
32.068 | Chlorine 35.452 | Argon
39.948 | | 19
K
Potassium
39.0983 | 20
Ca
Calcium
40.078 | 21
SC
Scandium
44.9559 | 22
Ti
Titanium
47.867 | 23
V
Vanadium
50.9415 | 24
Cr
Chromium
51.9961 | 25
Mn
Manganese
54.9380 | 26
Fe
Iron
55.845 | 27
Co
Cobalt
58.9332 | 28
Ni
Nickel
58.6934 | 29
Cu
Copper
63.546 | 30
Zn
Zinc
65.38 | 31
Ga
Gallium
69.723 | 32
Ge
Germanium
72.630 | 33
AS
Arsenic
74.9216 | 34
Se
Selenium
78.971 | 35
Br
Bromine
79.904 | 36
Kr
Krypton
83.798 | | 37
Rb
Rubidium
85.4678 | 38
Sr
Strontium
87.62 | 39
Y
Yttrium
88.9058 | 40
Zr
Zirconium
91.224 | 41
Nb
Niobium
92.9064 | 42
Mo
Molybdenum
95.95 | 43
TC
Technetium
[99] | Ruthenium 101.07 | 45
Rh
Rhodium
102.906 | Palladium 106.42 | 47
Ag
Silver
107.868 | 48
Cd
Cadmium
112.414 | 49
In
Indium
114.818 | 50
Sn
Tin
118.710 | 51
Sb
Antimony
121.760 | Te
Tellurium
127.60 | 53
lodine
126.904 | 54
Xe
_{Xenon}
131.293 | | 55
Ce
Cesium
132.905 | 56
Ba
Barium
137.327 | 57 - 71
Lanthanides | 72
Hf
Hafnium
178.49 | 73
Ta
Tantalum
180.948 | 74
W
Tungsten
183.84 | 75
Re
Rhenium
186.207 | 76
OS
Osmium
190.23 | 77
Ir
Iridium
192.217 | 78
Pt
Platinum
195.084 | 79
Au
Gold
196.967 | 80
Hg
Mercury
200.592 | 81
Tl
Thallium
204.384 | 82
Pb
Lead
207.2 | 83
Bi
Bismuth
208.980 | Po
Polonium
[210] | 85
At
Astatine
[210] | 86
Rn
Radon
[222] | | 87
Fr
Francium
[233] | Radium [226] | 89 - 103 Actinides | 104
Rf
Rutherfordium
[267] | 105
Db
Dubnium
[268] | 106
Sg
Seaborgium
[271] | 107
Bh
Bohrium
[272] | 108
HS
Hassium
[277] | 109 Mt Meitnerium [276] | DS
Darmstadtium
[281] | Rg
Roentgenium
[280] | 112
Cn
Copernicium
[285] | 113
Nh
Nihonium
[278] | 114
Fl
Flerovium
[298] | 115
Mc
Moscovium
[289] | 116
LV
Livermorium
[293] | TS
Tennessine
[293] | 118
Og
Oganesson
[294] | | | Lanthanides | 57
La
Lanthanum
138.905 | 58
Ce
Cerium
140.116 | 59
Pr
Praseodymium
140.908 | 60
Nd
Neodymium
144.242 | Promethium [145] | 62
Sm
Samarium
150.36 | 63
Eu
Europium
151.964 | 64
Gd
Gadolinium
157.25 | 65
Tb
Terbium
158.925 | Dy
Dysprosium
162.500 | 67
HO
Holmium
164.930 | 68
Er
Erbium
167.259 | 69
Tm
Thulium
168.934 | 70
Yb
Ytterbium
173.045 | 71
Lu
Lutetium
174.967 | | | | Actinides | AC
Actinium
[227] | 90
Th
Thorium
232.038 | Protactinium 231.036 | 92
U
Uranium
238.029 | 93
Np
Neptunium
[237] | 94
Pu
Plutonium
[239] | 95
Am
Americium
[243] | 96
Cm
Curium
[247] | 97
Bk
Berkelium
[247] | 98
Cf
Californium
[252] | 99
Es
Einsteinium
[252] | 100
Fm
Fermium
[257] | 101
Md
Mendelevium
[258] | NO
Nobelium
[259] | 103
Lr
Lawrencium
[262] | | ^{*} The atomic weight of elements whose atomic weight has a range lists an intermediate value. ^{*} An example of the mass number of the radioactive isotope of elements without stable isotopes that do not exhibit a specific isotope composition in nature is given in the brackets [].